CS 4530: Fundamentals of Software Engineering
Module 3, Lesson 5
JavaScript in the Browser

Rob Simmons
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

So, software engineering must encompass:

PLANNING

ORGANIZING Fs

IMPLEIVIENTING

PEOPLE

&

PROCESSES

PROGRAMS

-

_

We’re gonna be

a bit.

~

stuck over here for

/

So, software engineering must encompass:

PLANNING

ORGANIZING Fs

IIVIPLEIVIENTING

PEOPLE

PROCESSES

PROGRAMS

We’re gonna be

stuck over here for

a bit.

/

Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:

e Describe the relationship between JavaScript,
TypeScript, HTML, and the Document Object Model
(DOM)

e Explain the historical and present value of “frontend
tooling”

HTML: The Markup Language of the Web

* Language for describing structure of

Read more on
MediaGuardian.co.uk

a document |
: Vevo revolutionary
* Denotes hierarchy of elements o e e

* Browser turns this into a “live”
version — the Document Object

Model (DOM)
* (Inspector demo)

Frontend tooling

Approximate timeline:
* 2006: jQuery makes direct DOM manipulation fun
* 2010: NodelS
* 2011: React (Facebook internal) | NONE of these run

 2012: TypeScript in the browser directly
e 2013: React&JSX (public)

People got very used to having to compile their hundreds
of not-browser-JavaScript files to one Browser JavaScript
to do anything (makes dev slow!)

Frontend tooling

Many build steps are technically unnecessary...
but it’s been a long, long road
e 2015: ES Modules introduced (import)
e 2019: ES Modules in NodelS, all major browsers support

e 2020: Vite explores using ES Modules to avoid regenerating the one-big-
JavaScript-file for every minor change while developing code

e 2022: All supported versions of NodelS support ES Modules

e 2022: (Still-controversial, possibly doomed) proposal for “types as
comments” in the JavaScript standard

January 7, 2025: NodelS v23.6 allows direct running of TypeScript files with
no extra configuration (just ignores the types)

 May 6, 2025: NodelS 24.x is the first long-term supported version of
NodelS that allows direct running of TypeScript files

Frontend tooling

Frontend tooling is not going anywhere:
e It reduces the size of the JS that ever needs to be downloaded

* Frontend tooling enables powerful browser caching strategies

strategy.town

./‘ H\x

| Log into strategy.town

[]

D:l |:|:| r'|:| *-I-* |:| Elements Console Sources @ Network Timelines Storage Graphics

Filter Full URL S Disable Caches

Headers Cookies Sizes Timing Security

{to:"/forum", className:o,children:"Forum"}) ,E.jsx(fi,

{to:" /profile/${u}’ ,id:"menu_user",className:o,onClick:r,children:"Profile
index-BgHnULVO.js {return E.jsx(E.Fragment,{children:E.jsxs("div",{id:"main", className:"main
{}),E.jsx(BS,{}),E.jsx("div", {id:"right_main",className:"right_main",child
{})H1})}) }const rr="/api/thread",HS=async()=>{try{return(await Bt.get (" ${
D index-B5i5be0N.css {return en(i)}},gS=async i=>{try{return(await Bt.get(${rr}/${i})).datalc
en(1)}},YS=async(i, 1,u)=>{try{return(await Bt.post(${rr}/${1}/comment’,
{auth:i,payload:u})).data}catch(r){return en(r)}},GS=async(i, 1)=>{try{retu
Bt.post(${rr}/create’,{auth:i, payload:1})).data}catch(u){return en(u)}};f

D strategy.town

@ socket.io

{const[1,u]=0.useState(null);return 0.useEffect(()=>{HS().then(u)}, [ul),1?
{message: Error: ${l.error} }:1l.length===07?{message:"No threads found..."}
{message:"Loading..."}}var Gu={exports:{}}, kS=Gu.exports,Bm;function VS(){

	Slide 1: CS 4530: Fundamentals of Software Engineering Module 3, Lesson 5 JavaScript in the Browser
	Slide 2: So, software engineering must encompass:
	Slide 3: So, software engineering must encompass:
	Slide 4: Learning Objectives for this Lesson
	Slide 5: HTML: The Markup Language of the Web
	Slide 6: Frontend tooling
	Slide 7: Frontend tooling
	Slide 8: Frontend tooling

